Unimig Hyperarc 16TC Welding Guns of Australia Pty Ltd

Chemwatch Hazard Alert Code: 4

Chemwatch: **5443-87** Version No: **2.1.1.1** Safety Data Sheet according to WHS and ADG requirements Issue Date: **29/12/2020** Print Date: **29/12/2020** L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Unimig Hyperarc 16TC	
Chemical Name	Not Applicable	
Synonyms	Part Numbers - U63006, U63007, U63008, U63009, U63010	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses MMA welding electrode low hydrogen twin coated suitable for all positions except vertical down.	
--	--

Details of the supplier of the safety data sheet

Registered company name	Nelding Guns of Australia Pty Ltd	
Address	112 Christina Road Villawood NSW 2163 Australia	
Telephone	+61 2 9780 4200	
Fax	Not Available	
Website	Not Available	
Email	sales@unimig.com.au	

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	Not Available
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification [1]	Acute Toxicity (Inhalation) Category 4, Carcinogenicity Category 1A	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)	

Signal word D

ord Danger

Hazard statement(s)

H332 Harmful if inhaled.

H350 May cause cancer.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.	
P271	Use only outdoors or in a well-ventilated area.	
P281	31 Use personal protective equipment as required.	
P261	Avoid breathing dust/fumes.	

Precautionary statement(s) Response

P308+P313 IF exposed or concerned: Get medical advice/attention.	
P312 Call a POISON CENTER or doctor/physician if you feel unwell.	
P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available		welding electrode
Not Available		which upon use generates:
Not Available	>60	welding fumes
Not Available		as
124-38-9		carbon dioxide
630-08-0		carbon monoxide
7439-96-5.		manganese fume
69012-64-2		silica welding fumes
Not Available		phosphorous fume
Not Available		sulfur fume
7440-02-0		nickel fume
7440-47-3		chromium fume
7439-98-7		molybdenum fume
Not Available		action of arc on air may generate:
10028-15-6		ozone
Mixture		nitrogen oxides

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	 Particulate bodies from welding spatter may be removed carefully. DO NOT attempt to remove particles attached to or embedded in eye. Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital. For "arc eye", i.e. welding flash or UV light burns to the eye: Place eye pads or light clean dressings over both eyes. Seek medical assistance. For THERMAL burns:

Do NOT remove contact lens

 Check pulse and breathing to monitor for shock until emergency help arrives. 	Skin Contact	 Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital. Arc rays can injure eyes For thermal burns: Decontaminate area around burn. Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. Use compresses if running water is not available. Cover with sterile non-adhesive bandage or clean cloth. Do NOT apply butter or ointments; this may cause infection. Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top layers of skin) Cool the burn by immerse in cold running water for 10-15 minutes. Use compresses if running water is not available. Do NOT break blisters or apply butter or ointments; this may cause infection. Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top two layers of skin) Cool the burn by immerse in cold running water for 10-15 minutes. Use compresses if running water is not available. Do NOT break blisters or apply butter or ointments; this may cause infection. Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): Lay the person fild. Elevate burn area above heart level, if possible. Cover the person with coat or blankt. Seek medical assistance. For third-degree burns Separate burned toes and fingers with dry, ste
	Inhalation	Other measures are usually unnecessary. Generally not applicable.

Indication of any immediate medical attention and special treatment needed

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

Both dermal and oral toxicity of manganese salts is low because of limited solubility of manganese. No known permanent pulmonary sequelae develop after acute manganese exposure. Treatment is supportive.

[Ellenhorn and Barceloux: Medical Toxicology]

In clinical trials with miners exposed to manganese-containing dusts, L-dopa relieved extrapyramidal symptoms of both hypo kinetic and dystonic patients. For short periods of time symptoms could also be controlled with scopolamine and amphetamine. BAL and calcium EDTA prove ineffective.

Page 4 of 21

SECTION 5 Firefighting measures

Extinguishing media

Metal dust fires need to be smothered with sand, inert dry powders.

- DO NOT USE WATER, CO2 or FOAM.
- ▶ Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- Chemical reaction with CO2 may produce flammable and explosive methane.
- ▶ If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.
- DO NOT use halogenated fire extinguishing agents.

Fire Incompatibility None known.

Special hazards arising from the substrate or mixture

File incompatibility	None known.
Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. Slight hazard when exposed to heat, flame and oxidisers.
Fire/Explosion Hazard	 Do NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. Do NOT use water or foam as generation of explosive hydrogen may result. With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present. Metal powders, while generally regarded as non-combustible: May burn when metal is finely divided and energy input is high. May beignited by friction, heat, sparks or flame. May beignited by friction, heat, sparks or flame. May REIGNITE after fire is extinguished. Will burn with intense heat. Note: Metal dust fires are slow moving but intense and difficult to extinguish. Containers may explode on heating. Dusts or fumes may form explosive mixtures with air. Gases generated in fire may be poisonous, corrosive or irritating. Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids. Tomperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning. Decomposition may produce toxic fumes
HAZCHEM	Not Applicable
IAZOIIEM	

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Secure load if safe to do so. Bundle/collect recoverable product. Collect remaining material in containers with covers for disposal.
Major Spills	 Do not use compressed air to remove metal dusts from floors, beams or equipment Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation. Use non-sparking handling equipment, tools and natural bristle brushes. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations Cover and reseal partially empty containers. Do not allow chips, fines or dusts to contact water, particularly in enclosed areas. If molten: Contain the flow using dry sand or salt flux as a dam. All tooling (e.g., shovels or hand tools) and containers which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. Allow the spill to cool before remelting scrap. Clean up all spills immediately. Waer protective clothing, safety glasses, dust mask, gloves. Secure load if safe to do so. Bundle/collect recoverable product. Use dry clean up procedures and avoid generating dust. Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). Water may be used to prevent dusting. Collect remaining material in containers with covers for disposal. Flush spill area with water.
	 Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment as required. Prevent spillage from entering drains or water ways. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. Wash area and prevent runoff into drains or waterways. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling	 For molten metals: Molten metal and water can be an explosive combination. The risk is greatest when there is sufficient molten metal to entrap or seal off water. Water and other forms of contamination on or contained in scrap or remelt ingot are known to have caused explosions in melting operations. While the products may have minimal surface roughness and internal voids, there remains the possibility of moisture contamination or entrapment. If confined, even a few drops can lead to violent explosions. All tooling, containers, molds and ladles, which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. Any surfaces that may contact molten metal (e.g. concrete) should be specially coated Drops of molten metal in water (e.g. from plasma arc cutting), while not normally an explosion hazard, can generate enough flammable hydrogen gas to present an explosion hazard. Vigorous circulation of the water and removal of the particles minimise the hazard. During melting operations, the following minimum guidelines should be observed: Inspect all materials prior to furnace charging and completely remove surface contamination such as water, ice, snow, deposits of grease and oil or other surface contamination resulting from weather exposure, shipment, or storage. Store materials in dry, heated areas with any cracks or cavities pointed downwards. Preheat and dry large objects adequately before charging in to a furnace containing molten metal. This is typically done by the use of a drying oven or homogenising furnace. The dry cycle should bring the metal temperature of the coldest item of the batch to 200 degree C (400 deg F) and then hold at that temperature for 6 hours. Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. <l< th=""></l<>

	 When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use.
	 Avoid physical damage to containers.
	Always wash hands with soap and water after handling.
	Work clothes should be laundered separately. Launder contaminated clothing before re-use.
	Use good occupational work practice.
	Observe manufacturer's storage and handling recommendations contained within this SDS.
	Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	Store away from incompatible materials.

Conditions for safe storage, including any incompatibilities

Suitable container	Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards. If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler.
Storage incompatibility	Welding electrodes should not be allowed to come into contact with strong acids or other substances which are corrosive to metals.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	welding fumes	Welding fumes (not otherwise classified)	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	carbon dioxide	Carbon dioxide	5000 ppm / 9000 mg/m3	54000 mg/m3 / 30000 ppm	Not Available	Not Available
Australia Exposure Standards	carbon dioxide	Carbon dioxide in coal mines	12500 ppm / 22500 mg/m3	54000 mg/m3 / 30000 ppm	Not Available	Not Available
Australia Exposure Standards	carbon monoxide	Carbon monoxide	30 ppm / 34 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	manganese fume	Manganese, fume (as Mn)	1 mg/m3	3 mg/m3	Not Available	Not Available
Australia Exposure Standards	nickel fume	Nickel, powder	1 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	nickel fume	Nickel, metal	1 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	chromium fume	Chromium (metal)	0.5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	ozone	Ozone	Not Available	Not Available	0.1 ppm / 0.2 mg/m3	Not Available

Emergency Limits

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3	
carbon monoxide	Carbon monoxide	75 ppm	Not Available	Not Available	
manganese fume	Manganese	3 mg/m3	5 mg/m3	1,800 mg/m3	
silica welding fumes	Silica, amorphous fume	45 mg/m3	500 mg/m3	3,000 mg/m3	
nickel fume	Nickel	4.5 mg/m3	50 mg/m3	99 mg/m3	
chromium fume	Chromium	1.5 mg/m3	17 mg/m3	99 mg/m3	
molybdenum fume	Molybdenum	30 mg/m3	330 mg/m3	2,000 mg/m3	
ozone	Ozone	0.24 ppm	1 ppm	10 ppm	
Ingredient	Original IDLH	Original IDLH			
welding fumes	Not Available	Not Available		Not Available	
carbon dioxide	40,000 ppm	40,000 ppm			
carbon monoxide	1,200 ppm	1,200 ppm		Not Available	

Unimig	Hyperarc	16TC
--------	----------	------

Ingredient	Original IDLH	Revised IDLH
manganese fume	500 mg/m3	Not Available
silica welding fumes	Not Available	Not Available
nickel fume	10 mg/m3	Not Available
chromium fume	250 mg/m3	Not Available
molybdenum fume	Not Available	Not Available
ozone	5 ppm	Not Available
nitrogen oxides	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
molybdenum fume	E	≤ 0.01 mg/m³	
nitrogen oxides	E	≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure		

band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

MATERIAL DATA

for welding fume:

In addition to complying with any individual exposure standards for specific contaminants, where current manual welding processes are used, the fume concentration inside the welder's helmet **should not** exceed 5 mg/m3, when collected in accordance with the appropriate standard (AS 3640, for example). ES* TWA: 5 mg/m3

TLV* TWA: 5 mg/m3, B2 (a substance of variable composition)

OES* TWA: 5 mg/m3

Most welding, even with primitive ventilation, does not produce exposures inside the welding helmet above 5 mg/m3. That which does should be controlled (ACGIH). Inspirable dust concentrations in a worker's breathing zone shall be collected and measured in accordance with AS 3640, for example. Metal content can be analytically determined by OSHA Method ID25 (ICP-AES) after total digestion of filters and dissolution of captured metals. Sampling of the Respirable Dust fraction requires cyclone separator devices (elutriators) and procedures to comply with AS 2985 (for example).

Exposure controls

	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.
	Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
	 Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system. Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within. Open-vessel systems are prohibited.
Appropriate engineering	 Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary
controls	work areas to the operation.
	Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless
	decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
	For maintenance and decontamination activities, authorized employees entering the area should be provided with and
	required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
	 Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
	Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
	Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.
	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed
	engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to
	provide this high level of protection.
	The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Special ventilation requirements apply for processes which result in the generation of aluminium, copper, fluoride, manganese or zinc fume. + For work conducted outdoors and in open work spaces, the use of mechanical (general exhaust or plenum) ventilation is required as a minimum. (Open work spaces exceed 300 cubic meters per welder) • For indoor work, conducted in limited or confined work spaces, use of mechanical ventilation by local exhaust systems is mandatory. (In confined spaces always check that oxygen has not been depleted by excessive rusting of steel or snowflake corrosion of aluminium) Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Air Speed: Type of Contaminant: 0.5-1.0 m/s welding, brazing fumes (released at relatively low velocity into moderately still air) (100-200 f/min.) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of welding or brazing fumes generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in normal use. Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment. Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Special ventilation requirements apply for processes which result in the generation of barium, chromium, lead, or nickel fume and in those processes which generate ozone. The use of mechanical ventilation by local exhaust systems is required as a minimum in all circumstances (including outdoor work). (In confined spaces always check that oxygen has not been depleted by excessive rusting of steel or snowflake corrosion of aluminium) Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:		Air Speed:	
welding, brazing fumes (released at relatively low velocity into moderately still air)		0.5-1.0 m/s (100-200 f/min.)	
Within each range the appropriate value depends on:			
Lower end of the range	Upper end of the range		
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents		

 2: Contaminants of low toxicity or of nuisance value only.
 2: Contaminants of high toxicity

 3: Intermittent, low production.
 3: High production, heavy use

 4: Large hood or large air mass in motion
 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the

Unimig Hyperarc 16TC extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of welding or brazing fumes generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. For manual arc welding operations the nature of ventilation is determined by the location of the work. For outdoor work, natural ventilation is generally sufficient. + For indoor work, conducted in open spaces, use mechanical (general exhaust or plenum) ventilation. (Open work spaces exceed 300 cubic metres per welder) • For work conducted in limited or confined spaces, mechanical ventilation, using local exhaust systems, is required. (In confined spaces always check that oxygen has not been depleted by excessive rusting of steel or snowflake corrosion of aluminium) Mechanical or local exhaust ventilation may not be required where the process working time does not exceed 24 mins. (in an 8 hr. shift) provided the work is intermittent (a maximum of 5 mins. every hour). Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: Air Speed: welding, brazing fumes (released at relatively low velocity into moderately still air) 0.5-1.0 m/s (100-200 f/min.) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of high toxicity 2: Contaminants of low toxicity or of nuisance value only. 3: High production, heavy use 3: Intermittent, low production. 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Personal protection Goggles or other suitable eye protection shall be used during all gas welding or oxygen cutting operations. Spectacles without side shields, with suitable filter lenses are permitted for use during gas welding operations on light work, for torch brazing or for inspection. For most open welding/brazing operations, goggles, even with appropriate filters, will not afford sufficient facial protection for operators. Where possible use welding helmets or handshields corresponding to EN 175, ANSI Z49:12005, AS 1336 and AS 1338 which provide the maximum possible facial protection from flying particles and fragments. [WRIA-WTIA Technical Note 7] An approved face shield or welding helmet can also have filters for optical radiation protection, and offer additional protection Eye and face protection against debris and sparks UV blocking protective spectacles with side shields or welding goggles are considered primary protection, with the face shield or welding helmet considered secondary protection. The optical filter in welding goggles, face mask or helmet must be a type which is suitable for the sort of work being done.A filter suitable for gas welding, for instance, should not be used for arc welding. • Face masks which are self dimming are available for arc welding, MIG, TIG and plasma cutting, and allow better vision before the arc is struck and after it is extinguished. For submerged arc welding use a lens shade which gives just sufficient arc brightness to allow weld pool control. Skin protection See Hand protection below Welding Gloves Hands/feet protection Safety footwear **Body protection** See Other protection below • Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]

Other protection Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]

• Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and

on the same level with locations where direct exposure is likely. Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave
protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious
containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees
entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
Before starting; consider that protection should be provided for all personnel within 10 metres of any open arc welding operation.
Welding sites must be adequately shielded with screens of non flammable materials. Screens should permit ventilation at floor
and ceiling levels.
During repair or maintenance activities the potential exists for exposures to toxic metal particulate in excess of the
occupational standards. Under these circumstances, protecting workers can require the use of specific work practices or
procedures involving the combined use of ventilation, wet and vacuum cleaning methods, respiratory protection,
decontamination, special protective clothing, and when necessary, restricted work zones.
• Protective over-garments or work clothing must be worn by persons who may become contaminated with particulate during activities such as machining, furnace rebuilding, air cleaning equipment filter changes, maintenance, furnace tending, etc.
Contaminated work clothing and over-garments must be managed in a controlled manner to prevent secondary exposure to
workers of third parties, to prevent the spread of particulate to other areas, and to prevent particulate from being taken home by workers.
Personnel who handle and work with molten metal should utilise primary protective clothing like polycarbonate face
shields, fire resistant tapper's jackets, neck shades (snoods), leggings, spats and similar equipment to prevent burn injuries. In
addition to primary protection, secondary or day-to-day work clothing that is fire resistant and sheds metal splash is
recommended for use with molten metal. Synthetic materials should never be worn even as secondary clothing (undergarments).

Respiratory protection

Type NO Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	NO-AUS	-	NO-PAPR-AUS / Class 1
up to 50 x ES	-	NO-AUS / Class 1	-
up to 100 x ES	-	NO-2	NO-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Welding of powder coated metal requires good general area ventilation, and ventilated mask as local heat causes minor coating decomposition releasing highly discomforting fume which may be harmful if exposure is regular.

Welding or flame cutting of metals with chromate pigmented primers or coatings may result in inhalation of highly toxic chromate fumes. Exposures may be significant in enclosed or poorly ventilated areas

Respiratory protection not normally required due to the physical form of the product.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Grey solid with no odour; insoluble in water.		
Physical state	Manufactured	Relative density (Water = 1)	Not Applicable
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	Not Applicable	Decomposition temperature	Not Applicable
Melting point / freezing point (°C)	Not Applicable	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	Not Applicable	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available

Continued...

Unimig Hyperarc 16TC

Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Applicable
Vapour pressure (kPa)	Not Applicable	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Applicable	VOC g/L	Not Applicable

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

	Fumes evolved during welding operations may be irritating to the upper-respiratory tract and may be harmful if inhaled.
	Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.
	The toxicology of rare earth metal oxides has been determined by pathological and biochemical examination of rodents exposed to the oxides by oral, intraperitoneal or endotracheal routes. Weakly expressed general toxic action of the oxides is seen in acute and prolonged exposure. The dusts cause pronounced changes in the lungs. (The oxides of the rare earth metals are significantly less toxic than their salts.)
	Symptoms of exposure to rare earth oxides are coughing, congestion, granuloma in lungs and haemoglobinaemia. Rare earths may cause impairment of blood clotting.
	Exposure to rare earth oxide vapours has been reported to result in sensitivity to heat, itching, and an increased awareness of odour and taste, bronchiolitis, sub-acute bronchiolitis (inflammation of the bronchial tubes), acute transient chemical pneumonitis (inflammation of the lungs caused by chemical irritation), focal hypertrophia (excessive development of an organ), emphysema, regional bronchiolar stricturing, cellular eosinophilia (abnormal increase in the number of leucocytes with cytoplasmic inclusions, in the blood that is characteristic of allergic reactions), and, in some cases, fatal delayed chemical hyperemia (excess of blood in
Inhaled	a body part).
	Intratracheal administration to animals of some rare earth oxides, has been reported to cause changes ranging from mild to marked fibrosis (a condition marked by the increase of interstitial fibrous tissue), emphysema (a condition of the lungs marked by abnormal dilation of the its air spaces and distension of its walls), small white nodules, granulomas (a mass or nodule of chronically inflamed tissue with granulations that are generally associated with an infective process), giant cells, and accumulation of dust in the lungs.
	In rare fatal cases of exposure to the rare-earth fluoride and/or oxide mixtures, delayed chemical hyperaemia has occurred. Lung granulomas have also been seen in experimental animals.
	Acute carbon monoxide exposure can mimic acute gastroenteritis or food poisoning with accompanying nausea and vomiting. Rapidly fatal cases of poisoning are characterised by congestion and hemorrhages in all organs. The extent of the tissue and organ damage is related to the duration of the post-hypoxic unconsciousness. Exposure to carbon monoxide can result in immediate effects and, depending on the severity of the exposure, delayed effects. These delayed effects may occur days to weeks after the initial exposure. Signs of brain or nerve injury may appear at any time within three weeks following an acute exposure. Characteristically, those patients manifesting delayed neuropathology are middle aged or older. Most of the neurological symptoms associated with carbon monoxide exposure can resolve within a year but memory deficits and gait disturbances may remain Symptoms of poisoning resulting from carbon monoxide exposure include respiratory disorders, diarrhoea and shock. Carbon
	monoxide competes with oxygen for haemoglobin binding sites and has a 240-fold affinity for these sites compared to oxygen. In addition to oxygen deficiency further disability is produced by the formation of carboxymyoglobin (COHb) in muscles, to produce disturbances in muscle metabolism, particularly that of the heart.

	The tissues most affected by carbon monoxide are those which are most sensitive to the heart. The overt lesion in these tissues is mostly haemorrhage. The severe heada	
	be caused by cerebral oedema and increased intracranial pressure resulting from exc the hypoxic capillaries. Carbon monoxide induced hypoxia in the cochlea and brain stem leads to central hear (vertigo, nausea, vomiting) with the vestibular symptoms usually more prominent thar At low levels carbon monoxide may cause poor concentration, memory and vision pro- loss of muscle coordination, rapid and stretorous breathing, intermittent heart beat, lo death. At higher levels (200 ppm for 2-3 hours), it may cause headaches, fatigue and symptoms intensify and will be life-threatening after three hours. Exposure to levels o dangerous to life. When carbon monoxide levels in air exceed 3% (30,000 ppm), deat Carbon monoxide is not a cumulative poison since COHb is fully dissociable and once revert to oxyhemoglobin. The biological half life of carbon monoxide in the blood in se elimination becomes slower as the concentration decreases. Manganese fume is toxic and produces nervous system effects characterised by tired acute inflammation of the lungs may occur. A chemical pneumonia may also result fro formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0 fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onse in the mouth. Other symptoms include upper respiratory tract irritation accompanied b membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination a the funes develops rapidly, but is quickly lost. All symptoms usually subside within 24 Harmful levels of ozone may be found when working in confined spaces. Symptoms of membranes of the respiratory tract and lungs as well as pulmonary (lung) changes in (congestion and oedema) and in some cases haemorrhage. Exposure to chromium at c cause irritation to mucous membranes with symptoms such as sneezing, rhinorrhoea, redness of the throat and generalised bronchospasm. Inhalation of chromium fumes may cause metal fum	aring loss and vestibular dysfunction in the hearing loss oblems, vertigo, muscular weakness and ss of sphincter control and rarely coma and nausea. At very high levels (400 ppm) the f 1200 ppm or greater are immediately th occurs almost at once. e exposure has ceased, the hemoglobin will adentary adults is 2- 5 hours and the lness. Acute poisoning is rare although om frequent exposure. Inhalation of freshly 0.05 microns may result in "metal fume at of thirst, and a sweet, metallic or foul taste by coughing and a dryness of the mucous , nausea, occasional vomiting, fever or nd prostration may also occur. Tolerance to I-36 hours following removal from exposure. of exposure include irritation of the upper cluding irritation, accumulation of fluid e any pre-existing lung condition such as umulate. Oxygen monitoring may be certain oxidation levels (eg. Cr-VI) may , lesions of the nasal septum, irritation and symptoms, fever, chill, nausea, weakness
Ingestion	The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.	
Skin Contact	quantities is not thought to be cause for concern. Ultraviolet radiation (UV) is generated by the electric arc in the welding process. Skin exposure to UV can result in severe burn in many cases without prior warning. Exposure to infrared radiation (IR), produced by the electric arc and other flame cutting equipment may heat the skin surface a the tissues immediately below the surface. Except for this effect, which can progress to thermal burns in some situations, infrar radiation is not dangerous to welders. Most welders protect themselves from IR (and UV) with a welder's helmet (or glasses) a protective clothing. Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.	

Whith task mage the appropriate what depends on: Lincer end of the mage 1. Board and the mage in the strength of maintained to statube 2. Contensions of the transport of maintained to statube 3. Intermittent, too production, 3. Intermittent, too production, 4. Jung houd to the strength of the strength		Within each range the appropriate value depends on:	
I Deam are currents minimal or finauzable to capture I Deambing moon aris currents Contaminants of low booky or of naisance value only. I contaminants of low booky or of naisance value only only the low book on the matching of naisance value only only the low book on the matching of low book on the low book of presence on the low book of presence on the low book of thow book			Inner end of the range
2. Contaminants of low toxicity or of nutiance value only, 3. Interminent, but production. 3. Interminent, but production. 3. Interminent, but production. 4. Staff but but but the production of the second production of the second production. 4. Staff but but but but but the production of the second production of the sec			
Image: Second control of the second control			
4. Large hood or large air mass in motion 4. Small hood-local control only Simple theory shows that air velocity bias rapidly with distance away from the careford or is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple control is simple careful or its and the agains of the simple careful or its and the agains of the simple careful or its and the agains of the simple careful or its and the sits and the simple car			
Surge theory theorem and in values (b) the type of districts of the two force (in strips) cases. Therefore the set (in strips) cases that in the space of districts of the two forces. The strips of the strips cases is the strips of the strips cases. Therefore the set (in strips) cases is the strips of the strips cases. The strips of the strips cases is the strips of the strips cases. The strips of the strips cases is the strips of the strips cases. The strips of the strips cases is the strips of the strips cases. Que out, all, strips of the strips cases is the strips of the strips cases. Que out, all, strips of the strips cases is the strips of the strips cases is the strips of the strips cases. Que out, all, strips of the strips cases is the strips of the strips cases. Que out, all, strips of the strips cases is the strips of the strips cases. Que out, all, strips of the strips cases is the strips of the strips cases. Que out, all, strips of the strips case is the strips of the strips cases. Universe if the strips of the strips case is the strips of the strips cases. Que out, all strips of the strips case is strips of the strips of the strips cases. Universe if the strips of the strips case is the strips of the strips cases. Que out, all strips of the strips cases is strips of the strips cases. Universe if the strips of the strips case is the strips of the strips cases. Que out, all strips of the strips cases. Universe is the strips of the strips cases. Que out, all strips of the strips cases. Expoure of the human syst to thuman syst to strips of the strips cases. Que out,			
 and externa. As a potential situ sensitiesr, the tume may cause dematorise to appear subdemy and without varying. Absorption of hormo V compounds through the situ causa subscription potential deficing the kidneys and there. Ultraviolet (UV) radiation can also damage the lens of the eye. Many arc welders are sware of the condition known as "arc-eye," a sensation of sand in the eyes. This condition is caused by excessive eye exposure to ULE spouse of the human eye to intense visible light can produce adaptation, pupility reflex, and shading of the eyes. Such and adranged out to causelses Vision (gift from Delig compounds, for ear welding process, eye exposure to intense visible light to prevent excesses to a bask-rook without eye protection. On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of carner. Repeated or protonged exposure may also damage the liver and may cause a decrease in the hard trate. Systemic poisoning my result from histophic organs. The hard is a sufficient data to establish a causal association exposure to the material congests of mangamese containing subscripts. Progressive and permanent disability can occur from chronic manganese poisoning if its not treated. but it is not tratal. Chronic exposure has been associated with two mays or test from inhalation exponencies. Chronic exposure to to well karage to interna, surved speces, sometime exploring (rights), and result and permanent disability can occur from chronic manganese poisoning if its into treats due to the analysis. So distand that and explore and permanent disability can occur from chronic manganese poisoning it is solicital, with apathy, anoresia weekness, mestal medel advino (data data), explores and ballindation of		Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of welding or brazing fumes generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury would be able to the straction of the store form.	
 a sensation of sand in the eyes. This condition is caused by excessive eye excepture to UV. Exposure to UV. Expos		and eczema. As a potential skin sensitiser, the fume may ca	use dermatoses to appear suddenly and without warning. Absorption
 causal association between human exposure to the material and the development of cancer. Repeated or prolonged exposure may also damage the liver and may cause a decrease in the heart rate. Systemic poisoning may result from inhalation or chronic ingestion of manganese containing substances. Progressive and permanent disability can occur from chronic manganese poisoning if it is not trateled, but it is not fatal. Chronic exposure has been associated with two major effects; bronhitispneumonitis following inhalation of manganese dusts and "manganism", a neuropsychiatric disorder that may also arise from inhalation exposures to low levels may result in the accumulation of toxic concentration is nicitical organs. The brain in particular appears to sustain cellular damage to the gangtion. Symptoms appear before any pathology is evident and may include a mask-like facial expression, spastic gait, tremors, slurred speech, sometimes dystonia (disordered muscle tone), fatigue, anorexia, asthenia (loxis of strength and energy), apathy and the inability to concentrate. Insomnia may be an early finding. Chronic poisoning may occur over a 6-24 month period depending on exposure levels. The onset of chronic manganese polsioning is insidious, with apathy, anorexia weakness, headache and spasms. Manganese psychosis follows with certain definitive features: unaccountable laughre: euphris, impulsive acts, assentimitedness, mental confluxion, agneses to produce to sisons minicking those found in Parkinsen. Chronic Prolonged or preserve and fallucinations. The final stage is characterised by speech difficulties, muscular twitching, spastic gait and other nervous system effects. Symptoms resemble those of Parkinsen. Prolonged or preserve als an algorization. Prolonged or preserve als in a hallucinations. Prolonged or preserve als and anger as welding furmes from electrodes and workpiece. Reaction products arising fro	Eye	a sensation of sand in the eyes. This condition is caused by increase the skin effects of some industrial chemicals (coal t Exposure of the human eye to intense visible light can produ actions are protective mechanisms to prevent excessive ligh exposure to intense visible light is prevented for the most pa	excessive eye exposure to UV. Exposure to ultraviolet rays may also ar and cresol compounds, for example). Ice adaptation, pupillary reflex, and shading of the eyes. Such t from being focused on the retina. In the arc welding process, eye rt by the welder's helmet. However, some individuals have sustained
	Chronic	exposure to intense visible light is prevented for the most part by the widter's helmet. However, some individuals have sustained retinal damage due to careless "viewing" of the arc. At no time should the arc be observed without eye protection. On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer. Repeated or prolonged exposure may also damage the liver and may cause a decrease in the heart rate. Systemic poisoning may result from inhalation or chronic ingestion of manganese containing substances. Progressive and permanent disability can occur from chronic manganese poisoning if it is not treated, but its not fatal. Chronic exposure has been associated with two major effects; bronchitis/pneumonitis following inhalation of manganese dusts and "manganism", a neuropsychiatric disorder that may also arise from inhalation exposure. Chronic exposure to low levels may result in the accumulation of toxic concentrations in critical organs. The brain in particular appears to sustain cellular damage to the ganglion. Symptoms appear before any pathology is evident and may include a mask-like facial expression, spastic gait, tremors, slurred speech, sometimes dystonia (disordered muscle tone), fatigue, anorexia, asthenia (loss of strength and energy), apatity and the inability to concentrate. Insornia may be an early finding. Chronic poisoning may occur over a 6-24 month period depending on exposure levels. The onset of chronic manganese porisoning is insidious, with apathy, anorexia wakness, headache and spasms. Manganese psychosis follows with cortain definitive features: unaccuruation din Parkinsonism. If the disease is diagnosed whilst still in the early stages and the patient is removed from exposure, the course may be reversed. Inhalation of manganese to produce lesions minicking those forum in Parkinsonism. If the disease is diagnosed whilst still in	
Continued			

Foetal hemoglobin has a greater affinity for CO than maternal hemoglobin.
Due to differences in uptake and elimination of CO, the fetal circulation is likely to have COHb levels higher (up to 2.5 times) than seen in the maternal circulation.
The half-life of COHb in fetal blood is 3 times longer than that of maternal blood.
Since the fetus has a comparatively high rate of O2 consumption, and a lower O2 tension in the blood than adults, a compromised O2 transport has the potential to produce a serious hypoxia.
Carbon monoxide gas readily crosses the placenta and CO exposure during pregnancy can be teratogenic.
Carbon dioxide at low levels may initiate or enhance deleterious myocardial alterations in individuals with restricted coronary artery blood flow and decreased myocardial lactate production Linde
Metal oxides generated by industrial processes such as welding, give rise to a number of potential health problems. Particles smaller than 5 micron (respirables) articles may cause lung deterioration. Particles of less than 1.5 micron can be trapped in the lungs and, dependent on the nature of the particle, may give rise to further serious health consequences.
Exposure to fume containing high concentrations of water-soluble chromium (VI) during the welding of stainless steels in confined spaces has been reported to result in chronic chrome intoxication, dermatitis and asthma. Certain insoluble chromium (VI) compounds have been named as carcinogens (by the ACGIH) in other work environments. Chromium may also appear in welding fumes as Cr2O3 or double oxides with iron. These chromium (III) compounds are generally biologically inert. Welding fume with high levels of ferrous materials may lead to particle deposition in the lungs (siderosis) after long exposure.
This clears up when exposure stops. Chronic exposure to iron dusts may lead to eye disorders.
Silica and silicates in welding fumes are non-crystalline and believed to be non-harmful.
Other welding process exposures can arise from radiant energy UV flash burns, thermal burns or electric shock
The welding arc emits ultraviolet radiation at wavelengths that have the potential to produce skin tumours in animals and in
over-exposed individuals, however, no confirmatory studies of this effect in welders have been reported.
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving
organs or biochemical systems.
Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of
individuals at a greater frequency than would be expected from the response of a normal population.
Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue,
malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms
can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

]
1]
]
1]
]
1

Continued...

	Oral(Rat) LD50 >9000 mg/kg ^[2]	
	Oral(Rat) LD50 5000 mg/kg ^[2]	
	ΤΟΧΙΟΙΤΥ	IRRITATION
chromium fume	Not Available	Not Available
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Oral(Rat) LD50 >2000 mg/kg ^[1]	Not Available
molybdenum fume	Oral(Rat) LD50 2689 mg/kg ^[1]	
	Oral(Rat) LD50 4040 mg/kg ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION
ozone	Inhalation(Rat) LC50 0.001 mg/l/44H ^[2]	Eye: adverse effect observed (irreversible damage) ^[1]
		Skin: adverse effect observed (corrosive) ^[1]
nites and avides	ΤΟΧΙΟΙΤΥ	IRRITATION
nitrogen oxides	Not Available	Not Available
Legend:	 Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances 	
		es - manual metal arc, metal inert gas (MIG) and tungsten inert gas weldir
	(TIG) – and most welding is on mild steel. In 2017, an IARC working group has determined that	"sufficient evidence exists that welding fume is a human lung carcinogen
	(Group 1).	
		its complexity. Generally, welding fume is a mixture of metal fumes (i.e., irc
	-	gases (i.e., carbon monoxide, ozone, argon, carbon dioxide). Welding fum ponents that are classified as human carcinogens, including hexavalent
	, , , , , , , , , , , , , , , , , , , ,	etals and the intensity of exposure to each differ significantly according to

chrome and nickel. However the presence of such metals and the intensity of exposure to each differ significantly according to a number of variables, including the type of welding technique used and the composition of the base metal and consumable. Nonetheless, IARC did not differentiate between these variables in its decision.

There has been considerable evidence over several decades regarding cancer risks in relation to welding activities. Several case-control studies reported excess risks of ocular melanoma in welders. This association may be due to the presence in some welding environments of fumes of thorium-232, which is used in tungsten welding rods

Different welding environments may present different and complex profiles of exposures. In one study to characterise welding fume aerosol nanoparticles in mild steel metal active gas welding showed a mass median diameter (MMMD) of 200-300 nm. A widespread consensus seems to have formed to the effect that some welding environments, notably in stainless steel welding, do carry risks of lung cancer. This widespread consensus is in part based on empirical evidence regarding risks among stainless steel welders and in part on the fact that stainless steel welding entails moderately high exposure to nickel and chromium VI compounds, which are recognised lung carcinogens. The corollary is that welding without the presence of nickel and chromium VI compounds, namely mild-steel welding, should not carry risk. But it appears that this line of reasoning in not supported by the accumulated body of epidemiologic evidence. While there remained some uncertainty about possible confounding by smoking and by asbestos, and some possible publication bias, the overwhelming evidence is that there has been an excess risk of lung cancer among welders as a whole in the order of 20%-40%. The most begrudging explanation is that there is an as-yet unexplained common reason for excess lung cancer risks that applies to all types of welders. It has been have proposed that iron

WELDING FUMES

cancer among welders as a whole in the order of 20%-40%. The most begrudging explanation is that there is an as-yet unexplained common reason for excess lung cancer risks that applies to all types of welders. It has been have proposed that iron fumes may play such a role, and some Finnish data appear to support this hypothesis, though not conclusively. This hypothesis would also imply that excess lung cancer risks among welders are not unique to welders, but rather may be shared among many types of metal working occupations.

Welders are exposed to a range of fumes and gases (evaporated metal, metal oxides, hydrocarbons, nanoparticles, ozone, oxides of nitrogen (NOx)) depending on the electrodes, filler wire and flux materials used in the process, but also physical exposures such as electric and magnetic fields (EMF) and ultraviolet (UV) radiation. Fume particles contain a wide variety of oxides and salts of metals and other compounds, which are produced mainly from electrodes, filler wire and flux materials. Fumes from the welding of stainless-steel and other alloys contain nickel compounds and chromium[VI] and [III]. Ozone is formed during most electric arc welding, and exposures can be high in comparison to the exposure limit, particularly during metal inert gas welding of aluminium. Oxides of nitrogen are found during manual metal arc welding and particularly during gas welding. Welders who weld painted mild steel can also be exposed to a range of organic compounds produced by pyrolysis.

In one study particle elemental composition was mainly iron and manganese. Ni and Cr exposures were very low in the vicinity of mild steel welders, but much higher in the background in the workshop where there presumably was some stainless steel welding.

Personal exposures to manganese ranged from 0.01-4.93 mg/m3 and to iron ranged from 0.04-16.29 mg/m3 in eight Canadian welding companies. Types of welding identified were mostly (90%) MIG mild steel, MIG stainless steel, and TIG aluminum. Carbon monoxide levels were less than 5.0 ppm (at source) and ozone levels varied from 0.4-0.6 ppm (at source). Welders, especially in shipyards, may also be exposed to asbestos dust. Physical exposures such as electric and magnetic fields (EMF) and ultraviolet (UV) radiation are also common.

In all, the in vivo studies suggest that different welding fumes cause varied responses in rat lungs in vivo , and the toxic effects

	typically correlate with the metal composition of the fumes and their ability to produce free radicals. In many studies both soluble and insoluble fractions of the stainless steel welding fumes were required to produce most types of effects, indicating that the responses are not dependent exclusively on the soluble metals Lung tumourigenicity of welding fumes was investigated in lung tumour susceptible (A/J) strain of mice. Male mice were exposed by pharyngeal aspiration four times (once every 3 days) to 85 ug of gas metal arc-mild steel (GMA-MS), GMA-SS, or manual metal arc-SS (MMA-SS) fume. At 48 weeks post-exposure, GMA-SS caused the greatest increase in tumour multiplicity and incidence, but did not differ from sham exposure. Tumour incidence in the GMA-SS group versus sham control was close to significance at 78 weeks post exposure. Histopathological analysis of the lungs of these mice showed the GMA-SS group having an increase in preneoplasia/tumour multiplicity and incidence compared to the GMA-MS and sham groups at 48 weeks. The increase in incidence in the GMA-SS exposed mice was significant compared to the GMA-MS group but not to the sham-exposed animals, and the difference in incidence between the GMA-SS and MMA-SS groups was of border-line significance (p = 0.06). At 78 week s post-exposure, no statistically significant differences A significantly higher frequency of micronuclei in peripheral blood lymphocytes (binucleated cell assay) and higher mean levels of both centromere-positive and centromere-negative micronuclei was observed in welders (n=27) who worked without protective device compared to controls (n=30). The rate of micronucleated cells did not correlate with the duration of exposure WARNING: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS . Not available. Refer to individual constituents.
CARBON MONOXIDE	- central nervous system effects
SILICA WELDING FUMES	For silica amorphous: Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d. In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin. When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals. After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SAS injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser. Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at alrborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no
NICKEL FUME	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

	WARNING: This substance has been classified Tenth Annual Report on Carcinogens: Substance [National Toxicology Program: U.S. Dep. of Heat	ce anticipated to be Carcinogen	bly Carcinogenic to Humans.
CHROMIUM FUME	For chrome(III) and other valence states (except hexavalent): For inhalation exposure, all trivalent and other chromium compounds are treated as particulates, not gases. The mechanisms of chromium toxicity are very complex, and although many studies on chromium are available, there is a great deal of uncertainty about how chromium exerts its toxic influence. Much more is known about the mechanisms of hexavalent chromium toxicity than trivalent chromium toxicity. There is an abundance of information available on the carcinogenic potential chromium compounds and on the genotoxicity and mutagenicity of chromium compounds in experimental systems. The consensus from various reviews and agencies is that evidence of carcinogenicity of elemental, divalent, or trivalent chromium compounds is lacking. Epidemiological studies of workers in a number of industries (chromate production, chromate pigment production and use, and chrome plating) conclude that while occupational exposure to hexavalent chromium compounds is associated with an increased risk of respiratory system cancers (primarily bronchogenic and nasal), results from occupational exposure studies to mixtures that were mainly elemental and trivalent (ferrochromium alloy worker) were inconclusive. Studies in leather tanners, who were exposed to trivalent chromium mere consistently negative. In addition to the lack of diract evidence of carcinogenicity of trivalent chromium relative to hexavalent chromium is likely related to the higher redox potential of hexavalent chromium and its greater ability to enter cells The general inability of trivalent chromium to traverse membranes and thus be absorbed or reach peripheral tissue in significant amounts is generally accepted as a probable explanation for the overall absence of systemic trivalent chromium toxicity. Elemental and divalent froms of chromium are not able to traverse membranes readity either. This is not to say that elemental, divalent, or trivalent chromium compounds cannot traverse membrane		
OZONE	NOTE: Ozone aggravates chronic obstructive pulmonary diseases. Ozone is suspected also of increasing the risk of acute and chronic respiratory disease, mutagenesis and foetotoxicity. In animals short-term exposure to ambient concentrations of less than 1 ppm results in reduced capacity to kill intrapulmonary organisms and allows purulent bacteria to proliferate [Ellenhorn etal].		
nitrogen oxides	Data for nitrogen dioxide: Substance has been epithelial proliferation and, in high concentration	• •	
SILICA WELDING FUMES & CHROMIUM FUME	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.		
CHROMIUM FUME & MOLYBDENUM FUME	No significant acute toxicological data identified in literature search.		
MOLYBDENUM FUME & OZONE & nitrogen oxides	Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.		
Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	×	Reproductivity	×
	,		,

Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×
	Le	gend: X – Data either not ava → – Data available to n	ailable or does not fill the criteria for classification nake classification

SECTION 12 Ecological information

	Endpoint	Test Duration (hr)	Species		Value	Source
Unimig Hyperarc 16TC	Not Available	Not Available	Not Available		Not Available	Not Availab
	Endpoint	Test Duration (hr)	Species		Value	Source
welding fumes	Not Available	Not Available	Not Available		Not Available	Not Availab
	Endpoint	Test Duration (hr)	Species	1	/alue	Sourc
carbon dioxide	NOEL	1344	Not Available	().000754-mg/L	4
	Endpoint	Test Duration (hr)	Species		Value	Sourc
carbon monoxide	LC50	96	Fish		672.6mg/L	2
	EC50	96	Algae or other aquatic plants		124.4mg/L	2
	Endpoint	Test Duration (hr)	Species		Value	Sourc
	LC50	96	Fish		>3.6mg/L	2
	EC50	48	Crustacea		>1.6mg/L	2
manganese fume	EC50	72	Algae or other aquatic plants		2.8mg/L	2
	BCF	552	Fish		100cpm	4
	NOEC	504	Algae or other aquatic plants		-0.05-3.7mg/L	4
	Endpoint	Test Duration (hr)	Species		Value	Sourc
	LC50	96	Fish		>100mg/L	2
silica welding fumes	EC50	72	Algae or other aquatic plants		ca.250mg/L	2
	NOEC	504	Crustacea		100mg/L	2
	Endpoint	Test Duration (hr)	Species	Va	alue	Sourc
	LC50	96	Fish	0.	0000475-mg/L	4
	EC50	48	Crustacea	0.	6858mg/L	2
nickel fume	EC50	72	Algae or other aquatic plants	0.	00094mg/L	2
	BCFD	2	Algae or other aquatic plants	-1	0-250mg/L	4
	NOEC	672	Fish	0.	0004-mg/L	4
	Endpoint	Test Duration (hr)	Species	Val	ue	Sourc
	LC50	96	Fish	-10	-100mg/L	4
chromium fume	EC50	48	Crustacea	-0.0)1-0.7mg/L	4
chromium tume	EC50	72	Algae or other aquatic plants	-0.0)26-0.208mg/L	4
	BCF	1008	Not Available	150	000-mg/L	4
	NOEC	672	Fish	0.0	0019-mg/L	4
	Endpoint	Test Duration (hr)	Species		Value	Sourc
	LC50	96	Fish		211mg/L	2
molybdenum fume	EC50	48	Crustacea		130.9mg/L	2
	EC50	72	Algae or other aquatic plants		26mg/L	2

	BCF	336		Not Available		64mg/L	4
	NOEC	48		Algae or other aquatic plants		-0.5-80mg/L	4
	Endpoint	Test Duration (hr)	Sp	pecies	Value		Source
ozone	LC50	96	Fis	sh	-0.008	31-0.0106mg/L	4
	NOEC	2160	Fis	sh	0.002	mg/L	5
	Endpoint	Test Duration (hr)		Species		Value	Source
nitrogen oxides	Not Available	Not Available		Not Available		Not Available	Not Available
Legend:	3. EPIWIN Sı	n 1. IUCLID Toxicity Data 2. Euro uite V3.12 (QSAR) - Aquatic Toxic uatic Hazard Assessment Data 6.	city Data (Es	stimated) 4. US EPA, Ecotox da	ntabase - Aq	uatic Toxicity Da	, nta 5.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
carbon dioxide	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
carbon dioxide	LOW (LogKOW = 0.83)

Mobility in soil

Ingredient	Mobility
carbon dioxide	HIGH (KOC = 1.498)

SECTION 13 Disposal considerations

Waste treatment methods	i	
Product / Packaging	•	Recycle wherever possible or consult manufacturer for recycling options.
disposal	•	Consult State Land Waste Management Authority for disposal.

SECTION 14 Transport information

Labels Required	
Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

welding fumes is found on the following regulatory lists

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

carbon dioxide is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

carbon monoxide is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

manganese fume is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

silica welding fumes is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

nickel fume is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

chromium fume is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

molybdenum fume is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

ozone is found on the following regulatory lists

Not Applicable

nitrogen oxides is found on the following regulatory lists

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	No (ozone)
Canada - DSL	No (ozone)
Canada - NDSL	No (carbon dioxide; carbon monoxide; manganese fume; silica welding fumes; nickel fume; chromium fume; molybdenum fume)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (manganese fume; nickel fume; chromium fume; molybdenum fume; ozone)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	No (ozone)
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (silica welding fumes)
Vietnam - NCI	Yes
Russia - ARIPS	Yes

National Inventory	Status
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	29/12/2020
Initial Date	29/12/2020

SDS Version Summary

Version	Issue Date	Sections Updated
2.1.1.1	29/12/2020	Chronic Health, Classification, Ingredients

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

- PC-STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit。
- IDLH: Immediately Dangerous to Life or Health Concentrations
- OSF: Odour Safety Factor
- NOAEL :No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- BCF: BioConcentration Factors
- BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.